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Abstract

In this paper, an improved distributed estimation scheme for static sensor networks is developed.
The scheme is developed for environmental time-variant physical variables. The main contribution of
this work is that the algorithm in [1]-[3] has been extended, and a filter has been designed with weights,
such that the variance of the estimation errors is minimized, thereby improving the filter design consid-
erably and characterizing the performance limit of the filter, and thereby tracking a time-varying signal.
Moreover, certain parameter optimization is alleviated with the application of a particular finite impulse
response (FIR) filter. Simulation results are showing the effectiveness of the developed estimation algo-
rithm.

Keywords: Distributed estimation, static sensor networks, minimum variance, performance limit, param-
eter optimization, estimation algorithm, time-variant.

1 Introduction

A sensor network (SN) is a network of autonomous devices that can sense their environment, make computa-
tions and communicate with neighboring devices. SNs and in particular wireless sensor networks (WSNs),
have a growing domain of application in areas such as environmental monitoring, industrial automation,
intelligent buildings, search and surveillance, and automotive applications [4]-[11]. The characteristics of
SNs motivate the development of new classes of distributed estimation and control algorithms which explore
these systems limited power, computing and communication capabilities. It is important that the algorithms
have tuning parameters that can be adjusted according to the demands set by the applications. In this paper,
we investigate a distributed estimation algorithm for tracking an unknown time-varying physical variable.

Today, an increasing number of applications demands remote control of plants over unreliable networks.
In these systems issues of communication delay, data loss and time—synchronization play critical roles. It
is noted in [12] that several approaches have focused on diffusion mechanisms to have each node of the
network obtain the average of the initial samples of the network nodes. Major progress has been made in
understanding the convergence behavior of these consensus or state-agreement approaches. In [1], a scheme
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for sensor fusion based on a consensus filter is proposed. Here, each node computes a local weighted least
squares estimate that is shown to converge to the maximum likelihood solution for the overall network.

This paper is organized as follows. Section 2 presents the related works. Section 3 presents the distributed
estimation problem formulation considered throughout the paper. The distributed estimator design is dis-
cussed in Section 4. A distributed minimum variance optimization problem is posed and by restricting the
set of admissible filter weights, it is possible to obtain a solution where the error convergence is guaranteed.
A bound on the estimation error variance is also computed. The latter part of Section 4 discusses estimation
of the error covariance. Section 5 presents the detail of the implementation of the estimation algorithm.
Numerical results and implementation structure illustrating the performance of the proposed estimator and
comparing it to some related proposals are also given. Finally, Section 6 concludes the paper.

2 Related Works

An extension of the approach for development of consensus filter based on sensor fusion is presented in
[13], where the authors study a distributed average computation of a time-varying signal, when the signal
is affected by a zero-mean noise. A convex optimization problem is posed to compute the edge weights,
which each node uses to minimize the least mean square deviation of the estimates. The same linear fil-
ter is also considered in [14], where the weights are computed off-line to speed up the computation of the
averages. Another approach towards estimation is using H., estimation with the case of limited commu-
nication capacity [15] and asynchronous filtering in [16]. Further characterization of consensus filters for
distributed sensor fusion is given in [3]. Another approach to distributed estimation is based on nonlinear
filters using self-synchronization and coupling functions, see [17]-[20]. In this case, the estimate of each
node is provided by the state of a nonlinear dynamical system. This system is coupled to some of the other
nodes by a static coupling function. Some conditions on the coupling function that lead to asymptotic state
synchronization are investigated in [20]. Distributed filtering using model-based approaches is studied in
various wireless network contexts, see for example [21]-[25]. Distributed Kalman filters and more recently
a combination of the diffusion mechanism, discussed previously, with distributed Kalman filtering, see [2]
and [26] have been proposed. A plausible approach is to communicate the estimates of the local Kalman
filters, and then average these values using a diffusion strategy.

Distributed signal processing is a very active research area due to the recent developments in networking,
computer and sensor technologies. In-network computing thus differs from the traditional architecture where
sensors simply provide raw data to a fusion center. By letting the network do the computations, it is possible
to reach a scalable, fault tolerant and flexible design. The drawback is that such a system is more difficult
to analyze, as it is an asynchronous distributed computing system [27] with inputs and dynamics coupled to
a physical environment. Despite current research activity and major progress, the theoretical understanding
is far from satisfactory of these systems, exposed to link and node failures, packet drops, restricted power
consumption, to name a few.

Considering distributed consensus-based estimation, iterative consensus protocols is shown in [28], local
average consensus algorithms can be seen in [29], consensus strategies-based algorithms can be seen in [30],
consensus iterations-based algorithms are proposed in [31], and convergence speed of consensus strategies
are shown in [32]. Then, distributed expectation maximization algorithm over sensor networks are also
proposed in the literature, where consensus filter used to diffuse local sufficient statistics to neighbors and
estimate global sufficient statistics in each node is shown in [33], distributed expectation maximization
algorithm over sensor networks, consensus filter used to diffuse local sufficient statistics to neighbors and
estimate global sufficient statistics in each node are proposed in this paper, consensus filter diffusion of local
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sufficient statistics over the entire network through communication with neighbor nodes is shown in [34].

Ignoring this, time delay is an obvious violation of the physics behind the propagation of signal, being
envisioned to be best estimated from measurements of distantly placed sensor nodes. Some recent results on
various topics of distributed estimation have been reported in [35]-[41]. If we consider results on time-vary-
ing state delay on network systems, an approach can be seen in [42]. Also, a robust H, estimation with
signal transmission delay and data packet dropouts can be seen in [43]. Moreover, considering the work
on time-delay a new delay system on networked system is proposed in [44], a robust stability for uncertain
delay in [45], a stabilization approach with delay in [46] and [47], a filtering technique for mixed random
delays is shown in [48], a feedback control approach with mixed delays is working in [49] and a disturbance
rejection technique for discrete-time delay systems is shown in [50].

The problem statement for estimation physical variables in SNs can be stated as follows. Consider the
estimation of an available SN is to be based on the available sensor measurements. In sensor networks, due
to the constraints on communication and computation, we cannot broadcast all the sensor measurements to
implement the real-time estimation of the field at the locations of interest. Rather, we have to determine the
relevant sensors and use their particular measurements only in the field estimation at a particular location of
interest.

The new proposed estimator for SNs presented in this paper belongs to a class of recently developed
filtering algorithms that exploit in-network computing [12]. The scalability of these algorithms is based on
that node operates using only local information. Suitable cooperation between neighboring nodes improves
the estimation quality considerably. Using sensor readings from more than one sensor, for example, can
overcome intrinsic performance limitations due to uncertainty and noise present in individual devices.

In this paper, we adopt the concept of minimum variance to develop an improved distributed estimation
algorithm by considering the propagation delay of the physical quantity to be measured. This estimation
algorithm has the following features:

e With a consideration of time-delay appearing in the measurements of different sensor nodes, it is
assumed that the source of data is located at a known position.

o It incorporates an FIR filter aims at simplifying the signal estimation and alleviating the parameter
optimization.

o It tracks a time-varying signal, while the estimators of [51] and [1] are limited to averaging initial
samples.

e Our approach does not require a model of the system that generates the signal to track, in contrast to
model-based approaches [2] and [25].

e There is no pre-assigned coupling law imposed among the nodes as in [20].

e Compared to the methods of [1]-[3], our approach does not rely on the Laplacian matrix associated
with the communication graph. Rather, it considers a more general model of the filter structure.

o Our filter parameters are computed through distributed algorithms, whereas, for example, the estima-
tors of [13] and [14] rely on centralized algorithms for designing the filters.

e By extending the algorithms in [1]-[3], we design the filter weights such that the variance of the
estimation errors is minimized, thereby improving the filter design considerably and we characterize
the performance limit of the filter.
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Remark 2.1 In this paper an improved distributed estimation method will be developed based on the con-
cept of minimum variance with a consideration of time delay appearing in the measurements of different
sensor nodes. The scheme is developed on a static SN. This is attributed to the time taken by physical quan-
tity to be measured (for example, temperature, acoustic waves, to name few) to propagate from one point in
the space to another one. In this regard, it is assumed that source of the data is located at a known position
and the spatial ordinates of the sensor nodes are known. This knowledge is applied to calculate the time
delay between the source of the data and any node in the network. The spectrum of the signal of interest is
assumed to be known a—priori. Based on this knowledge the data is first passed through a low pass FIR filter.
The signal is then jointly tracked by a SN, in which each node computes an estimate as a delay adjusted
weighted sum of its own and its neighbors measurements and estimates. The filter weights are time varying
and updated locally and it has a cascade structure comprised of two loops: an inner loop producing the
state estimate and an outer loop producing an estimate of the error covariance. The state estimate is thus
obtained as the solution of an optimization problem with quadratic cost function and quadratic constraints.
As will be shown in later section, incorporation of FIR filter helps to alleviate the optimal estimation of a
parameter, at a cost of acceptable deviation from the otherwise regular estimate. We show that the problem
has a distributed implementation with conditions that can be locally checked. It is argued that the estimator
is practically stable if the signal to track is slowly varying, so the estimate of each node converges to a neigh-
borhood of the signal to track. The estimate in each node has consequently a small variance and a small
bias. A bound on the estimation error variance, which is linear in the measurement noise variance and de-
cays with the number of neighboring nodes, is presented. The algorithm is thus characterized by a trade-off
between the amount of communication and the resulting estimation quality. Compared to similar distributed
algorithms presented in the literature, the one introduced in this paper features better estimates, but at the
cost of a slightly increased computational complexity. These aspects are illustrated in the implementation
discussion and computer simulations exposition in the latter part of the paper.

2.1 Notation

We denote the set of non-negative integers as Nop = {0,1,2,...} and N the number of nodes. With | - |
we denote either absolute value or cardinality, depending on the context. With || - | we denote the lo-
norm of a vector and the spectral norm of a matrix, where lo-norm is the length of the vector. Given
a matrix A € R™", we denote with \.(A),1 <r <n, its rth eigenvalue, with Apin(A4) = A\1(A) and
Amax(A) = A\, (A) being the minimum and maximum eigenvalue, respectively, where the order is taken
with respect to the real part. We refer to its largest singular value as vy,ax(A). The trace of A is denoted as
Tr(A). With I and 1 we denote the identity matrix and the vector (1,. . ., l)T, respectively. Given a stochastic
variable = we denote E[z] as the expected value of x. We denote Ny = N U {0}. For the sake of notational
simplicity, we discard the time dependence when it is clear from the context. In symmetric block matrices
or complex matrix expressions, we use the symbol e to represent a term that is induced by symmetry.

3 Problem Formulation and Preliminaries

Consider N > 1 sensor nodes with known static positions in space. It is assumed that the source of the
signal is located at a known position and thus the radial r; distance between an ith node and the signal
source is also known. The time 7; taken by a particular wavefront of the signal to travel from the source to
an ¢th node can be obtained from the following relationship.

= (1)

i
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where c is the propagation speed of the signal, assumed to be known. An ¢th node measures a common
scalar signal d(t) affected by additive noise and delayed by 7;:

Uiz, oy (t) = d(t — 1) +vj(t),i = 1,..., N, 2)

with ¢ € Ny and where v}(t) is zero-mean white noise. With the knowledge of 7;, data from an ith
node and its neighbors can be appropriately time adjusted (either delayed or advanced, depending upon
whether a neighbor node is closer to or farther from the source with respect to the ith node). We assume
that this operation on the data is performed at the very beginning of the distributed estimation scheme under
consideration and the resulting delay adjusted noisy signal is denoted as Uy (t).

Since the signal spectrum is assumed known, a significant amount of noise can be filtered out with the
application of a linear phase FIR filter. This processing of the signal can be carried out at each individual
node. As a result the signal will be left contaminated only with that part of the noise which has a spectrum
overlapping with that of the signal of interest. Let the filtered noisy signal and vestige of the noise at node @
are denoted as u;(t) and v;(t), respectively.

Let us collect measurements and noise variables in vectors, u(t) = (u1(t), ..., un(t))T and v(t) =
(v1(t), ..., vn ()7, so that we can rewrite the previous equation as:
u(t) =d(t)1+wv(t), te No. (3)

The covariance matrix of v(t) is assumed to be diagonal (See remark 3.1) ¥ = 021, so v;(t) and v;(¢), for
i # j, are uncorrelated. The additive noise, in each node, can be averaged out only if nodes communicate
measurements or estimates. The communication rate of the measurements and estimates should be just fast
enough to track the variations of d(¢). Indeed, increasing the sampling rate, in general, is not beneficial
because measurements might then be affected by auto-correlated noise.

It is convenient to model the communication network as an undirected graph G = (V, E), where V =
{1,..., N} is the vertex set and £ C V x V the edge set. We assume that if (i, j) € E then (j,i) € E,
so that the direction of the edges can be dropped when representing the network. The graph G is said to
be connected if there is a sequence of edges in E that can be traversed to go from any vertex to any other
vertex.

In the sequel, we denote the set of neighbors of node where ¢ € V plus the node itself as:
Ny ={jeV:(ji)e E}U{(i,i}. 4)

The estimation algorithm we propose is such that a node ¢ computes an estimate x;(¢) of d(¢) by taking a
linear combination of neighboring estimates and measurements.

zi(t) = Y kij(t)zi(t — 1)+ Y hij(t)u;(t). (5)

JEN; JEN;

We assume that neighboring estimates and measurements are always successfully received, i.e., there are
no packet losses. This assumption is obviously plausible for wired connections, but it is still valid in wireless
networks if certain assumptions hold true. More specifically, the designed estimator is suitable in wireless
networks where the sampling time between measurements is long compared to the coherence time of the
wireless channel (which is around some hundreds of milliseconds) and an Automatic Repeat Request (ARQ)
protocol is used. Under such assumptions, if the wireless channel does not allow a packet to be successfully
received at a given time instance, there is enough time to detect and retransmit erroneous packets until they
are successfully received. These assumptions are representative of the IEEE 802.11b and IEEE 802.11g
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[52], which have been actually used for distributed estimation and control algorithms of unmanned aerial
vehicles [53].

We assume that for each node i, the algorithm is initialized with 2 ;(0) = u;(0), j € N;. In vector notation,
we have

2(t) = K()a(t — 1) + H(t)u(t). ©6)

K(t) and H(t) can be interpreted as the adjacency matrices of two graphs with time-varying weights.
These graphs are compatible with the underlying communication network represented by G.

Given an SN modeled as a connected graph (G, we have the following design problem: find time-varying
matrices K (t) and H(t), compatible with G, such that the signal d(t) is consistently estimated and the
variance of the estimate is minimized. Moreover, the solution should be distributed in the sense that the
computation of k;;(t) and h;;(t) should be performed locally by node i.

Remark 3.1 It should be noted here that it is assumed to be diagonal as there are multiple sensors at each
location, sensing, for example, waves at different frequencies. Again under the assumption that well-sep-
arated sensors have uncorrelated measurement noise, and sensors at the same location have correlated
measurement noise, the sensor noise covariance matrix would be block-diagonal. As such the covariance of
all of the sensor measurements would decompose as the sum of a low-rank matrix (with rank equal to the
total number of sources over all measured frequencies) and a block-diagonal matrix. A block-diagonal and
low-rank decomposition problem also arises if the second Diagonal and Low-Rank Matrix Decompositions
order statistics of the noise have certain symmetries.

3.1 Convergence of the centralized estimation error

In this section, we derive conditions on K (¢) and H (t) that guarantee the estimation error to converge.
Define the estimation error e(t) = z(t) — d(t)1. Introduce 6(¢) = d(t) — d(t — 1), so that the error dynamics
can be described as:

e(t) = K()e(t—1)+dt)(K(t) + H(t) — )1
5K )1 + Ht)o(t). %)

Taking the expected value with respect to the stochastic variable v(¢), we obtain
Ele(t)] = K(t)Ele(t —1)]+d(t)(K(t)+H(t)— 1)1
—0(t)K(t)1. ®)

Proposition 3.1 Consider system (7) and assume that
(K(t)+ H(t)1=1, )
and that there exists 0 < vy < 1

s.t. VmaX(K(t)) <9, Vte Ny

(1) If H(t)1 = 1, forall t € Ny, then
lim Ele(t)] = 0. (10)

t——+o0
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(2) If |6(t)| < A, forallt € Ny, then

. VNAy
Jim [lEle(®)]]] < T (I

Proof: If (K (t) + H(t))1 = 1 then the system equation reduces to
Ele(t)] = K(t)E[e(t — 1)] + 0(¢)(H(t) — I)1. (12)

(1) If H(t)1 = 1, then (12) becomes E[e(t)] = K(t)E[e(t — 1)]. Let us consider the function V(t) =
IIE[e(t)]||. It follows that

V() KOVt —-1) < V(- 1) < %VI(0), (13)

which implies that limy;_, o ||E[e(?)]]| = 0. It should be noted here that a finite difference technique
is used in (13) of a mathematical expression of the form, lets say f(x + b) - f(x + a). If a finite dif-
ference is divided by b - a, one gets a difference quotient. The approximation of derivatives by finite
differences plays a central role in finite difference methods for the numerical solution of differential
equations, especially boundary value problems. In this case, a forward difference has been used as
Ap[fl(x) = f(z + h) - f(z), where depending on the application, the spacing h may be variable or
constant.

(2) In this case, we have H ()1 — 1 = —K(t)1 and thus the system (7) becomes

Ele(t)] = K(t)E[e(t — 1)] — 6(¢) K (t)1. (14)
With V (t) = ||E[e(t)]]|, we have
V)< IE@IV(E=1) +IE@)IVNA
< V(E-1)+7VNA
< AV + 07— 35 VNA. (15)
Taking the limit for ¢ — +o00 we obtained the result. VVV

Proposition 3.1 (i) provides the condition H ()1 = 1 under which the estimate is unbiased. It is possible
to show that in this case the variance is minimized if K (¢) = 0 and

1 . . '
hij(t) = hy(t) = { wy i iEN;

0 otherwise.

(16)

Note that nodes do not use any memory and that the error variance at each node is proportional to its
neighborhood size. However, if d(t) is slowly varying, then under the assumptions of Proposition 3.1 (ii),
it is possible to guarantee that ||E[e(t)]|| tends to be a neighborhood of the origin, but the estimate might be
biased. Note also that ||E[e(¢)]|| is a cumulative bias, that is, it is a function of the sum of the N biases of
individual nodes.

The size of the cumulative bias can be kept small with respect to the signal to track by defining a proper
value of vg. In particular, (11) can be related to the Signal-to-Noise Ratio (SNR) of the average of the
estimate as follows. Let P; denote the average power of d and let P, denote the desired power of the biases
of the average of the estimates. Then, we define the desired SNR as SNR = P,/ P,. Since there are N nodes,
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we consider the average SNR of each node as Y = SNR/N. Let us assume that we want the estimator to
guarantee that the right-hand side of Equation (11) be equal to this desired vV SN R, i.e., that

VYT
Y= ——=--.
VT +A

The right-hand side is useful in the tuning of the estimator. Hence, we denote it as f(A,T). By choosing
an appropriate T, we have a guaranteed convergence property of the estimator given by the corresponding
f(A,Y). This function will allow us to relate the size of the bias of estimates with the variations of the
signal to track, and the stability of the estimates, as we see in the next sections.

(17)

4 Distributed Estimation Design

In this section we describe how each node computes adaptive weights to minimize its estimation error
variance. Notice that, in order to guarantee that the estimation error of the overall sensor network, in
average, converges to a neighbor of the origin, each node needs to locally compute the row-elements of
K(t) and H(t) so that conditions in Proposition 3.1 are fulfilled. The condition (K (t) + H(t))1 = 1is
easily handled in a distributed way, as it states that the sum of the row-elements of K (¢) and H(¢) need to
sum up to one. The bound on the maximum singular value of K (¢), however, requires some transformations
so that new conditions on the row-elements of K (t ) fulfill Ymax (K (t)) < f(A,T). It turns out that it
is possible to determine a local condition, jen; Fij < 1;, where 1); is a constant that can be computed
locally by the nodes. We then pose an optlmlzatlon problem for finding optimal weights that minimize
the error variance in each node, where the previous conditions are considered as constraints. An important
aspect of the distributed optimal solution is that the weights depend on the error covariance matrix, which is
not available at each node. We end this section by discussing a way of estimating it.

4.1 Distributed variance minimization

Let M; = |N;|, which denotes the number of neighbors of measurement of node ¢, including the node itself.
Collect the estimation errors available at node 7 in the vector ¢; € RMi . The elements of ¢; are ordered
according to node indices:

T . .
Ei:(eila-”veiMi) y o < <y, (18)

Similarly, we introduce vectors k! (t),nl (t) € RM:i corresponding to the non-zero elements of row i of
the matrices K (¢) and H (), respectlvely, and ordered according to node indices.
The expected value of the estimation error at node ¢ can be written as

Ele;(t)] = r] (O)E[ei(t — 1)] — &7 ()5(t)1, (19)

where we used the fact that d(t) — d(t —
inequality is equivalent to (r;(t) + n;(¢))T1

Ele;(t) — E[ei(1)])* = & (OT3(t — Dra(t) + o*nf (t)mi(t), (20)

where T;(t) = Ele;(t) — E[e;(t)]][e:(t) — Ele;(t)]]*. To minimize the variance of the estimation error in

each node, we need to determine r;(t) and 7);(¢) so that the previous expression is minimized at each time
instant. We have the following optimization problem:

Pi: min & (0Dt — )ki(t) + o>nl (#)ni(t) 21)
Hi(t)frli(t)

JE
1) = 4(t) and that (K (¢) + H(t))1 = 1. Note that the latter
= 1. We assume that e;(0) = w;(0). Hence
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st (ki) + ()71 =1 and Ymax (K (1)) < f(A,T)

The inequality constraint (22) is still global, since Ymax(K (¢)) depends on all x;(¢),s = 1,...,N. We
show next that it can be replaced by the local constraint:

lki(t)]| < s, t € No, (22)

where v; > 0 is a constant that can be computed locally. The new constraint, however, even though
ensure the stability of the estimation error, leads to a distributed solution which is in general different from
the centralized one.

Fori =1,..., N define the set ©; = {j # i : N; N N; # 0}, which is the collection of nodes located at
two hops distance from node 7 plus neighbor nodes of ?. We have the following result.

Proposition 4.1 Suppose there exist y; > 0,5 =1,..., N, such that

Vi + Y yJallally; < (AT, (23)
JEO;
where al( ])ozl(]]) € (0, 1) are such that
> wh<alldoeh > W<all3 e @9
ceN;NN; r=1 c€N;NN; r=1

Ifl5i(®)|? < biyi =1,..., N, then ymax (K (t)) — f(A, ).

Proof: We use Gershgorin’s theorem (See Remark 4.1) to bound the eigenvalues of the matrix K K7 i.e.
the singular values of K. The following relations hold: [K K7 ];; = S-Mi k2 and [KKT);; = SN | Kickije.
By the Gershgorin’s theorem we know that forr =1,..., N

MEKT) e N {zeR: |2 - [KKT);| < Ri(KKT)}, (25)
with
N
Ri(KKT): Z HKKT zy’ = Z ‘Zkzck]c (26)
J=1j7#i j=1,j#i c=1

Now the inner sum in R;(K K1) is non-zero only for ¢ € N; N N;. Thus,

Ry(KKT) = Z‘ S kickyel. @7

J€EO; ceEN;NN;

Using the Cauchy-Schwartz inequality,

DD e DN S - (28)

cEN;NN; ceEN;NN;  ceN;NN;
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Then,
N N
> [okekil < )Y B K
j=1,j#i c=1 VISSH ceN;NN; ceN;NN;
DS 5 0\
< D\ D e DK,
JjEB; r=1 r=1
M;
(ONE))
oy D (29)
r=1
Hence,
M;
M(KKT) e UY, zeC: ‘z - Zf{?jT (30)
r=1
M;
> (e S, o
jG@i r=1
From the hypothesis that ||x;|| = S22, K2 < 1p; and (23), then
M; M; M; o
S| S 3| el < ) @
r=1 r=1 JEO; r=1
Hence Ymax(K) < f(A,T). \YAYAY

Proposition 4.1 provides a simple local condition on the filter coefficients such that yyax (K) — f(A, T).
We can expect that Proposition 4.1 is in general conservative, because no a—priori knowledge of the network
topology is used, the proof relies on the Gershgorin’s theorem and the Cauchy-Schwartz inequality. There
are many other ways to bound the eigenvalues of a matrix by its elements than the one used in the proof
above of proposition 4.1, for example, ([54], pages 378.389). However, we do not know of any other bounds
requiring only local information. Further, the Peron-Frobenius theory cannot be directly applied to bound
the eigenvalues, because we make no assumption on the sign of the elements of K (¢).
® ()
i, 0.
tive bounds on the maximum eigenvalue of K K. In Section 5, we show how to chose these parameters to
avoid bounds that are too conservative.

The parameters «; : and o’ in Proposition 4.1 can all be set to one. However, this yields very conserva-

Remark 4.1 Gershgorins Theorem is used for estimating eigenvalues of a certain matrix. It estimates the
range of the eigenvalues. This cannot be determined by trace of the matrix. The trace merely tells us what all
the eigenvalues add up to. It doesn’t give us any range for the eigenvalues. Even if we have a very small trace
we can still theoretically have two eigenvalues whose absolute values are very large but have an opposite
sign.
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4.2 Optimal weights for variance minimization

Using previous results, we consider the following local optimization problem:

Py : (H)lin( | Hi(t)TFi(t — 1)/@'(15) + UQUi(t)Tm' (t) (33)
Kki(t),mi(t

s.t. (ki(t) + m(t))Tl =1 and HHZHQ < v, (34)

We remark here that Problem P5 has a different solution with respect to Problem P, because the constraint
(21) has been replaced with (34). Problem P5 is convex. In fact, the cost function is convex, as I'(t — 1)
is positive definite, since it represents the covariance matrix of Gaussian random variable, and the two
constraints are also convex. The problem admits a strict interior point solution, corresponding to ;(t) = 0
and 7;(t)1 = 1. Thus, Slater’s condition is satisfied and strong duality holds ([55], p. 226). The problem,
however, does not have a closed form solution: we need to rely on numerical algorithms to derive the optimal
k;(t) and n;(t). The following proposition provides a specific characterization of the solution.

Proposition 4.2 For a given positive definite matrix I';(t — 1), the solution to problem Py is given by

o (Mt -1+ &N 1
i) = o21T(Ty(t — 1) + &)~ 11 + M, (35)

1
S o21T((t—1) + &)+ M

with & € [0, max(0, 0 /v/Mih; — Ain (Ci(t = 1)))].

7i(t) (36)

Proof: Since the problem is convex and Slater’s condition holds, the KIKK'T conditions (See remark 4.2)are
both necessary and sufficient for optimality. The primal and dual optimal points, (£}, ;) and (A}, )
respectively, need to satisfy

(kDTrE =9 <0, (K +m)T1—1=0, (37)
& >0, (k)R — i) =0, (38)
2T + N Dk + /1 =0, 20°nf +v/1=0, (39)

where the last two KKT conditions follow from V., L(k;,n;,&,v) and V,, L(ks,n;, &, v) with the La-
grangian

L(kiymis&v) = w]Tirs + o™l m; + &(w] ki — 1) (40)
+ (ki +m)"1—1). (41)
Combining these two KKT conditions with the second KKT condition we obtain the optimal values.
From the fourth KKT condition we have that either £* = 0 or (x})7x} = 1);, where the second equality
gives
o1 T(T; + &1)721
(T + &)1 + M;)?

= (42)
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We are not able to provide a solution £* in closed form. Instead we give a bound for the variable. From
the previous equation, we can enforce a £ > 0 such that

4 —12 4
T x - OINT + 67| o
K) R < < < Y, 43
from where we obtain
o2
f Z )\min(ri)a (44)

VM
and for all these values of £ the first KKT condition is always satisfied. This implies that the optimal value
of ¢ must be in the interval [0, max(0, 0% /v/M;¥; — Amin(Li(t — 1))], and the theorem is proven. VVV

Proposition 4.2 gives an interval within which the optimal &; can be found. The first constraint in Problem
P- is similar to the water-filling problem for power allocation in wireless networks [29]. Analogous to
that problem, simple search algorithms such as a bisection algorithm, can be considered to solve for &;
numerically. Note that each node ¢ needs to know the covariance matrix I';(¢ — 1) to compute the weights.
It is important to notice that the Problem Py does not have the same solution as the Problem P, as the
constraints (21) and (34) are not equivalent, although if (34) holds then (21) holds as well.

Remark 4.2 KKT conditions (also known as the KuhnTucker conditions) are first order necessary condi-
tions for a solution to be optimal, provided that some regularity conditions are satisfied. Allowing inequality
constraints, the KKT approach to nonlinear programming generalizes the method of Lagrange multipliers,
which allows only equality constraints. It should be noted that KKT conditions become necessary when the
problem is convex and Slater’s conditions hold. Slater’s theorem provides a sufficient condition for strong

duality to hold. Namely, if:

o The primal problem is convex,

o [t is strictly feasible, that is, there exists xoy € R™ such that Axo = b, fi(xg) < 0,i=1,... m, then strong
duality holds: p* = d*, and the dual problem is attained.

4.3 Bounds on the error variance
The optimal weights from Proposition 4.2 gives the following estimation error variance.

Proposition 4.3 Let x;(t) and n;(t) be an optimal solution given by (35) and (36). Then
Elei(0) — E[e(0)]* =0, (45)

Q

Elei(t) — Ele(D)] <<, t € No{0}. (46)

=%

Proof: Fort = 0,¢;(0) = u;(0) = d(0) + v;(0), so E[e;(0) — E[e;(0)]]> = n?. Fort > 0, the error
variance of the i-th node with the optimal values of x;(t) and n;(t) is

0.2

M; +a21T(T;(t — 1) + &)~ 11
ot 1T (Dy(t — 1)+ &1)%1
(MZ' + 021T(Fi(t — 1) + fiI)_11)2

0.2

T M+ Tt — )+ &)L 47)

Ele;(t) — E[e; (1)) =
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Since T';(t — 1) is positive definite and &; > 0, it holds that 17 (I';(t — 1) + &1)~'1 > 0. Hence E[e;(t) —
Elei(t)]]* < {1, t € No {0}. This concludes the proof. \YAYAY)

A consequence of Proposition 4.3 is that the estimation error in each node is always upper bounded by the
variance of the estimator that computes the averages of the M; measurements u;(t). The bound is obviously

rather conservative, since we do not use any knowledge about the covariance matrix I';(t). Proposition 4.2
helps us to improve the bound in Proposition 4.3 as follows.

Corollary 4.1 The optimal value of k;(t) and n;(t) are such that the error variance at node i satisfies

< - (48)

where t € Ny {0}.

Proof: Using the result in Proposition 4.3 we have that

2
TrT(t — 1) = (4 — _ St — 2 < L_
it 1) =) Elei(t =) — Eles(t —DIP < ) 77 (49)
JEN; JEN;
Thus
o2
)\m X Fz - % < rvs
wlit =D &) < 3+
JEN;
o2
+ max <0, W — )\nlin(ri(t — 1)))
o2
< Z AYE (50)
JEN; sz
where we used the bound on ¢ determined in Proposition 4.2. Since
1
17t -1+ &) > 51
( ( )+£ ) o )\max(ri(t_l)+£il)M ( )
we have that
2 o
Ele;(t) — Elei(t)]]” < 52
i) S Ve N (WO R 62
02
< - (53)
Mi+ (Z]GN M ( ﬂl)t) 1/2)
which completes the proof. VVV

Remark 4.3 The parameter optimization scheme is achieved with the help of low pass FIR filter, which
has filter weights for the quadratic cost function and constraints. These filter weights have two loops, one
inner loop and one outer loop. The function of the inner loop is to calculate the state estimate, where as
the function of outer loop is to calculate error covariance matrix. Then vectors k; T, n; T'(t) € RM:i have
been introduced corresponding to non-zero elements K (t) and H (t). After that the expected value Ee;(t) is
calculated which is the value of estimation error. Then by using local optimization as Pa, the optimization
problem is solved to minimize the variance of estimation error for a given positive definite matrix to achieve
parameter optimization.
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4.4 Distributed computation of constraints

The choice of the constants ¢;,7 = 1,..., N, in the local constraint of Problem Ps is critical for the per-
formance of the distributed estimator. Next we discuss how to compute good values of ;. The intuition
is that ¢); has to be upper bounded to guarantee the estimation error to converge, but ¢; should not be too
small in order to put large enough weights on the estimates. Indeed, from the proof of Proposition 4.2 we
see that if ¢); is large then the Lagrangian multiplier &; is small, since it must lie in the in interval max
0,02 //Mip; — Amin(Li(t — 1))]. From Proposition 4.3 (and Corollary 4.1) it is clear that the estimation
error variance at the node 7 decreases as ¢; decreases. Thus the larger the value of 1); the lower the error
variance.

The set of nonlinear equations in Proposition 4.1 provides a tool to determine suitable values of 1); that
guarantee stability. Since we are interested in determining the largest solution of the nonlinear equations,
we consider the following optimization problem:

max Z ;i (54)

s.t. ViV Y alaPly; < fA(A, 1)
JEO;
1/]2' > 07
withi =1,..., N. Itis possible to show that previous problem has a unique solution, which is the solution
to the following equations:

it Vo S Jalaly, = (A1) =1, N, (55)

J€B;
Clearly the solution of such system of nonlinear equations is interesting in our setup if it can be solved in
a decentralized fashion. The fact that in (55) only information from neighboring nodes is required, and not
of the entire network, allows us to develop a decentralized algorithm to compute the solution. Following
([571, pp. 181-191), we consider the iterative algorithm

Pt +1) =T(®) = (1), In((1))) (56)

with initial condition ¢(0) > 0 and with 7' : RY — RY such that

2
L) = (Z aE?}aE?}wn) +4f2(A,7)
JEO;

1506505 (t ] , (57)
JEO;

It is not difficult to show that T;(%)) is a contractive function. The component solution method in [57]
ensures that the fixed point solution at which the iteration converges is the solution of the nonlinear Equations
(55). The computation of the iteration (56) can be done distributively. Note that node ¢ does not need to know
the thresholds v, j # ¢, of all the other nodes in the network, but those which concur in the definition of
T;(1), i.e., 1; that are associated to the nodes of the set ©;. Thresholds corresponding to nodes at two hops
from node ¢ can be communicate to such node through its neighbors, with little communication overhead.
Notice that, the computation of the thresholds and the associated communication takes place before the
nodes start to track the signal d(t). Notice also that the convergence rate of the component solution method
for block contraction converges geometrically to the fixed point.
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4.5 Estimation of error covariance

Estimating the error covariance matrix is in general hard for the problem considered in this paper, because
the estimator is a time-varying system and the stochastic process x, and thus e, is not stationary. However, if
we consider the signals in the quasi-stationary sense, estimation based on samples guarantees to give good
results. We have the following definition.

Definition 4.1 (/30, p. 34]). A signal s(t) : R — R is said to be quasi-stationary if there exists a positive
constant C and a function Ry : R — R, such that s fulfills the following conditions

(1) Es(t) = my(t), lmq ()| < C forall

(2) Es(t)s(r) = Rs(t,r), |Rs(t,r)| < C forall t and

N
. 1
NB&ON;;RALt—Ty—RAﬂ (58)

Sforall T.

It is easy to see that the time-varying linear system (6) is uniformly bounded-input bounded-output stable
([58], p- 509). If a quasi-stationary signal is the input of such system, then its output is also quasi-stationary
[59]. In our case, the measurement signal u(t) is (component-wise) stationary and ergodic and thus also
quasi-stationary. This implies that also x(¢) is quasi-stationary, since it is the output of a uniformly ex-
ponentially stable time-varying linear system. Thus, we estimate the error covariance using the sample
covariance. Specifically, we have that the mean Ee; = m;(t) and covariance I';(¢) can be estimated from
samples as:

mei(t) = 7 éZ(T) (59)

Di(r) = = D (&(7) = e, (7)) (&(7) — e, (7)) (60)

where €;(t) is the an estimate of the error. Thus the problem reduces to design an estimator of ¢;(¢). Node
i has estimates z;;(¢) and measurements u;;(t),i; € Nj, available. Let z()(¢) and u()(t) denote the
collection of all these variables. We can model this data set as

O () = d(t)1 + B(t) + w(t) (61)

uD (1) = d(t)1 + v(t) (62)

where () € RMi models the bias of the estimates and w(t) is zero-mean Gaussian noise modeling the
variance of the estimator. Summarizing: node ¢ has available 2M; data values in which half of the data
are corrupted by a small biased term () and a low variance noise w(t) and the other half is corrupted by
zero-mean Gaussian noise v(t) with high variance. It is clear that using only u(?)(t) to generate an estimate
d(t) of d(t), which could then be used to estimate ¢;(¢) = () (£) —d(t)1, would have the advantage of being
unbiased. However, its covariance is rather large since M; is typically small. Thus, using only measurements
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Figure 1: Block diagram of the proposed estimator. It consists of two subsystems in a cascade coupling.
The subsystem to the left is an adaptive filter that produces the estimate of d(¢) with small variance and bias.
The subsystem to the right is an estimator block that estimates the error covariance matrix

to estimate d(t) yield to an over-estimate of the error, which results in poor performance. On the other hand,
using only z(?) (t) we obtain an under-estimate of the error. This makes the weights 7;(¢) rapidly vanish and
the signal measurements are discarded, thus tracking becomes impossible. From these arguments, in order
to use both z*(¢) and u*(t) we pose a linear least square problem as follows:

w314

st |B] H2 <p

with A € R2MixMi+1 g4 B ¢ RMixMi+1

A:“ é] B=[0 I],

and p being the maxim value of the squared norm of the bias. However, the previous problem is very
difficult to solve in a closed form, as it is a Quadratically Constrained Quadratic Problem and it typically
requires heavy numerical algorithms to find the solution, such the transformation into a SDP problem ([55],
p- 653). Notice also that, in general, the value of p is not known in advance, being it a maximum value of
the cumulative bias of M; nodes. We thus consider the following regularized problem.

2]-4[3

where v > ( is a parameter whose choice is typically rather difficult.

The solution of (63) is

min

J 2
. 63
dj BH' ©2

A A

(d, B) = [2',u']"A[ATA + vBT B] ™!

The inverse of the matrix in the previous equation can be computed in closed form using the following
result:
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Proposition 4.4 Ifv > 0 then

[ATA+vBTB|™! =

1 l+v —17 64)
= . v T
M;(1+2v) o —M1(1+12+3/I+11
Proof: By Schur’s complement we obtain
[ATA+vBTB|™ =
-1
<2MZ- - ffy) 17117 — 2M;(1 + v)I)~!
-1
° ((1 + ) — 2%2)
From [33], it follows that
11741 I 17
e .
(1+2) oM, T+ MOt 20)(1+0)
It is easy from here to show that the resulting matrix is (64). VVV

Since we are interested in estimating ¢;(t) = z(t) — d(t)1 we observe that such an estimate is given by /3.
From the solution of (63), we have

7t 17281+ v)1Ty?
1+v  M;(1+2v)1+v)

b= (65)

For the choice of the parameter  we propose to use the Generalized Cross-Validation (GCV) method [34].
This consists in choosing
I(ATA +vBTB)~1AT (2, u?)T||

Tr(ATA+vBTB)-1

v = argmin

Typically the GCV approach is computationally expensive since the trace of the matrix (A7 A4+vBT B)~!
is difficult to compute, but in our case we have a closed form representation of the matrix, and thus the
computation is not difficult. However, it might be computationally difficult to carry out the minimization.
Observing that

[(ATA + vBTB) AT (@', u)T|
tr(ATA+vBTB)-1
(A7 A+ BT B) AT
tr(ATA + yBTB)~1

v = argmin

(", u')T. (66)

< argmin

a sub-optimal value of v can be computed solving the right hand side of (66). Notice that the first term in
the right hand side of (66) is a function of v that can be computed off-line and stored in a look-up table at
the node. Then, for different data, the problem becomes that of searching in the table.

Using (65) with the parameter v computed from (66) we can then estimate the error mean and covariance
matrix applying (59) and (60), respectively.
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4.6 Sub-optimal approximation of estimation bias

The previous section explains the estimation of error covariance matrix, which in turn requires computation
of two parameters naming, 3(t) and v(¢). The computation of these parameter causes the increase in the
over-all computational complexity of the whole distributed estimation scheme. We propose an alleviation of
computing 3(t) by utilizing the fact that in most of the real world data acquisition systems, the contaminating
noise lies in frequency bands beyond the signal’s spectrum. Since the data is low-pass filtered prior to
estimation, we can assume that most of the noise power has been removed with the application of this filter,
and thus (61) can be re-written as

2 (t) = d(t)1 + B(t) (67)

where

and
Bilt) = uys (1) — wilt)

Though the accuracy of f3; is less than 5’1-, the reduced computational efforts justify this approximation in
the practical estimation systems.

S Implementation Structure and Numerical Implementation

This section presents the general implementation structure layout of the proposed estimation. Moreover, a
figure illustrating the estimator structure and later on the algorithmic implementation is shown followed by
some numerical results.

5.1 Layout for the proposed distributed estimation filter design

The general elementary implementation layout showing the connection between different steps can be de-
scribed in Table 1 where the first step is involved towards initial conditions for the time delay, the second
step defines the steps for the implementation for the FIR low pass filter. The third step shows the estimator
stability conditions, which is followed by computational complexity completing the layout for the proposed
distributed estimation filter design.

5.2 [Estimator Structure and Implementation

Fig. 1 summarizes the structure of the estimator implemented in each node. The estimator has a cascade
structure with two sub-systems: the one to the left is an adaptive filter that produces the estimate of d;
the one to the right computes an estimate of the error covariance matrix I';. In the following, we discuss
in some detail a pseudo-code implementation of the blocks in the figure. The estimator is presented as
algorithm program 5.2.  Initially, the distributed computation of the threshold is performed (lines 1-8):
node ¢ updates its threshold ; until a given precision w is reached. In the computations of );, we chose
o) = |N; N Ni| /(M; — 1) and o) = |N; 0 Ni| /(M; — 1). This works well in practice because ki, , i, =
1,..., M;, are of similar magnitude. Indeed, the stability of the average of the estimation error established
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in Section 3, and the bounds on the error variance in Section 4.3, ensure that estimates among nodes have
similar performance.

Numerical results show that the while-loop (lines 4-8) converges after about 10-20 iterations. Line 9 and
10 calculate the time delay of node ¢ and all of its neighbor nodes based on the knowledge of propagation
speed c. Since there is delaying and advancing of the signal is involved, the farthest node is taken as the
reference point and the corresponding time delay 7; is taken as the starting time of the algorithm (line 11).
The input signal at each node is then delayed or advanced, depending upon its geometrical location relative
to the node 7 (line 12-16).These delay-adjusted signal are then filtered to remove the higher frequency noise
(line 17-18). The estimators for the local mean estimation error and the local covariance matrix are then
initialized (lines 19-20). The main loop of the estimator is lines 23-38. Lines 24-29 are related to the left
subsystem of Fig. 1.

The optimal weights are computed using Equations (35) and (36) (lines 27-28). Notice that the optimal
Lagrangian multiplier &; is computed using the function bisection which takes as argument the interval
max(0, 02/ M;1p; — Amin(L;(t — 1))) where the optimal value lays. Notice that, if the nodes have limited
computational power, so that the minimum eigenvalue of the matrix I';(¢ — 1) cannot be exactly computed,
an upper-bound based on Gershgorin’s theorem can be used instead. The estimate of d(t) is computed in line
29. Lines 30-38 are related to the right subsystem of Figure 1. These lines implement the error covariance
estimation by solving the constrained least-squares minimization problem described in subsection 4.5 and
4.6. Sample mean and covariance of the estimation error are updated in lines 36-37. These formulas
correspond to recursive implementation of (59) and (60). As an option Bz(t) can be computed using 68.

With regards to the inversions of the estimated error covariance matrix f‘i in lines 27-28. In general, the
dimension of T'; is not a problem because we consider cases when the number of neighbors is small. Precau-
tions have still to be taken, because even though the error covariance matrix I'; is always positive definite,
its estimate T'; may not be positive definite before sufficient statistics are collected. In our implementation,
we use heuristics to ensure that T'; is positive definite.

5.3 Simulation Results

This section shows the simulation results of the proposed filter. Numerical simulations have been carried
out in order to validate performance of the proposed distributed estimator. We have simulated a scenario
of N = 10 nodes, with the structure of the sensor network shown in the Fig. 2, where each vertex is the
location of a node. Fig. 3 shows the original data d(t), and input data u(, /(%) at ur, ./ (t) is presented
from node 1 to 5, and node 6 to 10 in Fig. 4 and 5 respectively. Figs. 6 and 7 show the estimations x1 to z1g
for nodes 1 to 10. The data generation from the sensor networks goes through several steps as proposed in
the algorithm which during simulation also involves signal generation from all the 10 nodes, FIR filtering,
phase shift calculations and finally the estimation from node 1 to node 10. It has been that how the estimates
have been improved by proposed filter algorithm weights, such that the variance of the estimation errors is
minimized, thereby improving the estimation results. Moreover, in Fig. 8 and Fig. 9, it has been shown the
comparison of the d(t) with its estimate at a specific node 6 and 10, thus showing the effectivenss of the
proposed filter.

6 Conclusion and Future Work

In this paper, an improved distributed minimum variance estimation algorithm has been developed by con-
sidering the propagation delay of the physical quantity to be measured for static SNs. The proposed filter
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Program 5.2.0.1 Estimation algorithm for node ¢

STATE t:=0
Yi(t—1) =0
Yi(t) = 1/M;
¥i(t) = it = 1)| >0 =10717
Gilt+1) = T (1))
Collect thresholds from nodes in ©;
t:=t+1
ENDWHILE
STATE 71; = ?Cl
T = %,j € M;
Tj = %,] € M;
t:=max(r;),i=1,2,3,...,. N
IF r; <71
Uy (T) = U(r. (T — T
ELSE IF r; (<)rj et =)
Uy () = ey ) (4 75)
END
STATE u;(t) = Flilter (u,;) (1))
u;i(t) = Filter(uy(t))
u;j(t) = Filter(u, /)(t)),j e M;
t:=max(r;),i=1,2,3,...,N
(t):=0

WHILE  FOREVER
STATE M, := | N

ti=t+1
&; = bisection(max|[0, 02 /v/M;1h;— Amin(Ti(t — 1))])
Ki(t) = o2 (Di(t=1)+& 1)1

M;+021T (D (t—1)+&1)~1
i

Th(t) = M1+021T(f‘1(t—1)+§l]—)711
2i(t) = 2 jen, R (E = 1) + 2 5e N, mi; ()us(t)

zt 1T+ (140)1Tu? 1

B= T+v — M(+20)(1+v)

OR 3
i(t) == uy (1) — ui(?)

€ = B
OR

€ = BN

the, () == E2e, (t — 1) + 1&(t)

Fi(t> = %F (t—1)+ ¢ ( z(t) mei(t))(GZ(t) M, (t))T
ENDWHILE

MsM-KFUPM-HK-MSI[R-III].tex



Submitted 21

3 4
4 5 B
1 1 1 1 1 1 1 1 1
-200 -150 -100 -50 0 50 100 150 200 250
X [meters]

Figure 2: Structure of Sensor network. Note that, for example, node I has node 2 and node 3 as neighbors,
while node 3 has node 1, node 2, node 4, and node 5 as neighbors.
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Figure 3: The original signal dt)
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Figure 4: The input u., ./ (t) at node i, for i=1,2,... 5
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Figure 5: The input u,, ,/(¢) at node i, for i=6,7,... 10
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Figure 6: Estimates of d(¢) at node 1 to node 5
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Figure 7: Estimates of d(t) at node 6 to node 10
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Figure 8: Comparison of d(¢) and estimated d(¢) at node 6
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Figure 9: Comparison of d(t) and estimated d(t) at node 10
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Table 1: LAYOUT FOR THE PROPOSED DISTRIBUTED ESTIMATION FILTER DESIGN

Step 1: Initial condition for time-delay

- Data Location: known

- Sensor nodes (Spatial ordinates): known

- Calculate time-delay b/w source data and any node in the network
T, = 7’% (7;: ith node time, c: propagation speed of light, r;: distance b/w signal source & ith node which is known)
U(r; vl (t) = d(t — 1;) + v.(t), (ith node signal measurement for common scalar signal d(t) with delay ;)
xz(t) = K(t)x(t — 1) + H(t)u(t) (vector notation of neighboring estimates and measurements)

- Convergence of centralized estimation error

Step 2: Low Pass FIR Filter

- Filter Weights: (quadratic cost function and constraints)

Inner loop: state estimate

Outer loop: error covariance estimate
- Introduce vectors k! (t),n] (t) € RMi (corresponding to non-zero elements K (t) and H(t))

Ee;(t) = K;TF (t)Eei(t — 1) — Ii;fp(t)5(t)1, (expected value of estimation error at node 1)

Py ming, 1y g0y K7 (OTi(t = Dwi(t) + onf (Omi(t) st (wi(t) +mi(t)) 1 =1
and  Ymax (K (1)) < f(A,Y) (optimization problem to minimize variance of estimation error)
- Local optimization problem:

Py miny, 1) ) Ki(1) Ti(t — Dg(t) + o ni(8)Tmi(t) s.t.(ki(t) +mi(t)) "1 =1 and [|il]* < oy,

(For a given positive definite matrix T';(t — 1))

__ oM-D+&n "1 : 2/ ST

K'i(t) T 21T (T (t—1)+& 1)~ 11+ M; with fl € [07 maX(O, g / Mﬂ/}z - )\min(ri(t - 1)))]

Step 3: Condition of Estimator Stability

- IF signal to track slow varying (Each node estimate converge to the neighborhood)
- Each node estimate has small variance and small bias
- Trade off: Amount of communication and resulting estimation quality

Step 4: Computational Complexity
-2 (t) = d(t)1 + B(t) (where B(t)=0;(t)1 and Bi(t)zu,,l{ (t) — ui(t) & accuracy of f; is less than ;)

- The reduced computational efforts justify this approximation in the practical estimation systems

developed has been established providing some improved features. It has incorporated an FIR filter, which
aims at simplifying the signal estimation and alleviating the parameter optimization, thereby having a capa-
bility of tracking time-varying signal (environmental time-variant physical variables) without a pre-assigned
coupling law imposed among the nodes. The proposed filter has also been designed considering a more gen-
eral model of the filter structure, where the parameters were computed through distributed algorithms. The
algorithm’s filter weights were designed such that the variance of the estimation errors is minimized, thereby
improving the filter design considerably and characterizing the performance limit of the filter. Simulation
results have illustrated the effectiveness of the developed filter.

The research can be extended to distributed estimation with time varying delay and state delay considering
the network control system.
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